Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jiang-Sheng Li, ${ }^{\text {a }}$ * Xue-Min Duan, ${ }^{\text {b }}$ Peng-Mian Huang, ${ }^{\text {a }}$ Tao Zeng ${ }^{\text {a }}$ and Mei-Lian Fan ${ }^{\text {c }}$

${ }^{\mathrm{a}}$ School of Chemical Engineering \& Technology, Tianjin University, Tianjin 300072, People's Republic of China, ${ }^{\mathbf{b}}$ School of Pharmacy, Jiangxi Science \& Technology Normal University, Nanchang 330013, People's Republic of China, and ${ }^{\text {c College of Chemistry \& }}$ Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China

Correspondence e-mail:
jansenlee1103@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.112$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Diphenyl-1H-pyrazol-5-yl 4-chlorobenzoate

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}$, the molecular structure is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into dimers.

Comment

Benzoyl derivatives of 3-methylpyrazol-5-one possess herbicidal and growth-regulating activities (Vasilev et al., 1981), as well as anti-inflammatory properties (Terebenina et al., 1980). In a search for new compounds with higher activity, the title compound, (I), was obtained via 4-chlorobenzoylation of 3-phenylpyrazol-5-one.

The molecular structure of (I) is illustrated in Fig. 1. Rings A, B, C and D are all essentially planar, with r.m.s. deviations of 0.0023 (13), 0.0025 (18), 0.0015 (17) and 0.0013 (17) A, respectively. The dihedral angles between ring A and the three benzene rings are $A / B=49.5(3)^{\circ}, A / C=1.2(3)^{\circ}$ and $A / D=$ 4.7 (3) ${ }^{\circ}$. The bond lengths and angles are in agreement with reported values (Allen et al., 1987).

The molecular structure is stabilized by intramolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1). In the crystal structure, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into dimers, which are stacked along the a axis (Fig. 2).

Experimental

4-Chlorobenzoyl chloride ($0.37 \mathrm{~g}, 2.1 \mathrm{mmol}$) in benzene (5 ml) was added dropwise to a suspension of 1,3 -diphenyl- 1 H -pyrazol-5-one $(0.47 \mathrm{~g}, 2 \mathrm{mmol})$, prepared according to the literature method of Liu \& Li (2004), anhydrous sodium carbonate ($0.11 \mathrm{~g}, 1 \mathrm{mmol}$), a catalytic amount of tetrabutylammonium bromide in benzene (20 ml) and water (2 ml) over approximately 30 min at 283 K , and the resulting solution was stirred at ambient temperature for an additional 1 h . The reaction was quenched with aqueous saturated sodium carbonate $(10 \mathrm{ml})$ and the benzene layer was collected and evaporated under reduced pressure. The crude product was recrystallized from ethyl acetate/petroleum ether ($1: 5 \mathrm{v} / \mathrm{v}$) to give (I) as a colourless solid (yield: $0.30 \mathrm{~g}, 80 \%$, m.p. $398.8-399.9 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$):

Received 10 October 2005 Accepted 20 October 2005 Online 27 October 2005
$\delta 8.03(d, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.91(d, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.68(d, 2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.49-7.46$ ($m, 4 \mathrm{H}$), $7.43(t, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.38-7.34(m, 2 \mathrm{H})$, $6.82(s, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 160.9,151.1,144.9,141.1$, 138.1, 133.0 (2 C), 131.7 (2 C), 129.3 (2 C), 129.2 (2 C), 128.6, 128.3, 127.6, 126.3, 125.6 (2 C), 123.5 (2 C), 93.4. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a mixture of ethyl acetate and n-hexane ($2: 1 \mathrm{v} / \mathrm{v}$).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}$
$M_{r}=374.81$
Triclinic,, $1 \overline{1}$
$a=7.934(3) \AA$
$b=10.607(4) \AA$
$c=11.752(4) \AA$
$\alpha=80.890(5)^{\circ}$
$\beta=75.50(6)^{\circ}$
$\gamma=72.550(6)^{\circ}$
$V=909.6(6) \AA^{\circ}$

$$
Z=2
$$

$D_{x}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1612 reflections
$\theta=2.6-24.9^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, colourless
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.932, T_{\text {max }}=0.955$
4664 measured reflections

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and dashed lines indicate intramolecular hydrogen bonds.

Figure 2
The packing of (I). $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Liu, W. D. \& Li, J. S. (2004). Chin. J. Pestic. Sci. 6, 17-21.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Terebenina, A., Petrov, N., Iordanov, B. \& Stoimenov, G. (1980). German Patent No. 2836891.
Vasilev, G., Terebenina, A., Dimcheva, Z., Kostova, K., Yordanov, N., Yordanov, B. I., Kuzmanova, R. \& Borisov, G. (1981). Dokl. Bolg. Akad. Nauk, 34, 591-594.

